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We consider circular ensembles with nonuniform weight functions. We investigate the universality of short-
range and long-range level fluctuations, which are important in the study of quantum chaotic systems. We
analyze a set of hierarchic relations among the correlation functions to obtain the level density for a wide class
of potentials and to demonstrate universality of correlation functions in the case of weak periodic potentials
�where the term potential refers to the logarithm of the weight function�. Analytic study of circular unitary
ensemble is done with the help of orthogonal polynomials on the unit circle. For circular orthogonal and
symplectic ensembles, we introduce skew-orthogonal polynomials on the unit circle. We consider the
asymptotic forms of the polynomials for the three types of ensembles with weak potentials to give a proof of
the universality. The analytic results are verified by Monte Carlo simulations of the ensembles with different
weight functions. We also discuss the implications of these results in the context of conductance fluctuations in
mesoscopic systems and show that the universality breaks down for strong potentials.
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I. INTRODUCTION

Random matrix theory �RMT� has diverse applications in
the context of universal energy-level fluctuations in complex
nuclei, atoms and molecules, model quantum chaotic sys-
tems such as billiards, kicked rotors and tops, and amorphous
nanoclusters �1–6�. RMT has also been used extensively in
the study of disordered and mesoscopic systems �7� where it
explains the universality of conductance fluctuations. Fur-
thermore, RMT has found applications in quantum field
theory �5,8–12�.

The applications of RMT can be divided in two broad
classes, viz. autonomous systems and systems with time-
periodic Hamiltonians or quantum maps. For chaotic autono-
mous systems, Hamiltonian matrices are modeled by en-
sembles of Hermitian matrices �1–5�. Circular ensembles,
viz. ensembles of unitary matrices, are used as models for
evolution operators of quantum chaotic maps �4�. Circular
ensembles are also used as models for scattering matrices in
chaotic systems �5,7�. As in the case of ensembles of Her-
mitian matrices, there are three universality classes of circu-
lar ensembles, viz. circular orthogonal ensemble �COE�, cir-
cular unitary ensemble �CUE�, and circular symplectic
ensemble �CSE� according to the parameter values, �
=1, 2, and 4, respectively. The three ensembles, COE, CUE,
and CSE, are ensembles of symmetric unitary, general uni-
tary, and self-dual unitary matrices and are invariant under
orthogonal, unitary, and symplectic transformations, respec-
tively.

The primary interest in these ensembles is in the study of
energy level fluctuations. In the Hermitian cases, Gaussian as
well as non-Gaussian ensembles have been studied in great
detail �1,13–15�. On the other hand, for the circular en-
sembles most of the research is focused on ensembles with
uniform weight functions as introduced by Dyson
�1,7,16–18�. However, no strong justification has been given

for using uniform circular ensembles. We mention that the
level density has been investigated for some nonuniform
CUE’s in the context of lattice gauge theories �11,12� and
also semiclassical theory �19�. The aim of this paper is ana-
lytic and Monte Carlo studies of all three types of ensembles
of unitary matrices with nonuniform weight functions and to
discuss their applications.

Circular ensembles with uniform weight function have
been studied by many authors. In particular, the short-range
level fluctuation properties are well understood and verified
in model systems. In a recent work, we have considered the
long-range two-point correlations and confirmed their valid-
ity in the system of multiply kicked rotors �20�. In this paper
we investigate the short-range and long-range level fluctua-
tions and also conductance fluctuations in nonuniform circu-
lar ensembles. We show that just like non-Gaussian en-
sembles of Hermitian matrices, the nonuniform circular
ensembles are also exactly solvable. For �=2 this requires
study of polynomials orthogonal on the unit circle �21,22�.
For �=1, 4, orthogonal polynomials are not adequate and
one needs to introduce appropriate polynomials skew or-
thogonal on the unit circle. Skew-orthogonal polynomials on
the real line were introduced by Dyson �13� and Mehta
�1,23� and recently studied for many cases �14�. We define
skew-orthogonal polynomials on the unit circle in terms of
which circular ensembles for �=1,4 can be solved, thereby
extending the work of Szego and others �21,22�. In a few
cases we have been able to work out the polynomials explic-
itly. For weak periodic potentials �viz., logarthim of the
weight function� we confirm the universality of long-range
and short-range fluctuations. A similar study of conductance
fluctuations for weak periodic potentials is also consistent
with the universality. However universality of conductance
fluctuations breaks down for strong potentials.

In addition to polynomial methods mentioned above, we
have also considered the ensembles by considering hierar-
chic relations among the correlation functions whereby one
can derive the level density explicitly and also shed new
light on universal fluctuations. Moreover, we have made an
extensive Monte Carlo study of these ensembles for various*ap0700@mail.jnu.ac.in
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weight functions, using methods developed for Hermitian
matrices �15�.

In Sec. II, we introduce circular ensembles with arbitrary
weight functions. In Sec. III, we revisit the case of uniform
weight function �Dyson ensemble� and give results for long-
range fluctuations. In Sec. IV, we derive results for the level
density in ensembles with nonuniform weight functions. In
Sec. V, we analyze the hierarchic relations among the corre-
lation functions to discuss the universal aspects of fluctua-
tions. In Sec. VI, we give the polynomial method for �=2
for obtaining the correlation functions. In Secs. VII–IX, we
introduce skew-orthogonal polynomials on the unit circle for
�=1,4 ensembles. We consider in detail the polynomial re-
sults for weak periodic potentials. For �=1 and 4, we pro-
pose an ansatz for the asymptotic form of the polynomials,
similar to the asymptotic results given in �21� for �=2. In
Sec. X, we give Monte Carlo calculations to illustrate our
results for different weight functions. Section XI concerns
the conductance fluctuations which are shown to be universal
in the case of weak periodic potentials, but depart from the
universality for strong potentials. The results are summerized
in the concluding section.

II. CIRCULAR ENSEMBLES WITH ARBITRARY WEIGHT
FUNCTIONS

We consider circular ensembles with arbitrary weight
function w���. The joint-probability density �jpd� of ei-
genangles ��1 ,�2 , . . . ,�N� is given by

PN,���1, . . . ,�N� = c�
j�k

�ei�j − ei�k���
l

w��l� , �2.1�

where N is the dimensionality of the matrices and c is the
normalization constant. The weight function w��� is written
sometimes in terms of a periodic function V���,

w��� = e−�V���. �2.2�

In this form w��� is � dependent and V��� can be recognized
as the potential in a Smoluchwoski process. However, in
some applications below, it will be more convenient to deal
with the �-independent form of w���. As mentioned above,
the parameter � in �2.1� and �2.2� has the values 1,2,4, re-
spectively, for matrix ensembles invariant under orthogonal,
unitary, and symplectic transformations and the correspond-
ing matrices are symmetric unitary, �general� unitary, and
quaternion self-dual unitary, respectively. We recall that �
=1,4 apply to the two cases of time-reversal invariant sys-
tems whereas �=2 applies to systems without time-reversal
symmetry �1,16�. Note that the corresponding ensembles of
unitary matrices U has a jpd proportional to �det�D�U���2
where w���= �D�ei���2; see also �4.15�.

The n-eigenangle or n-level density correlation function
Rn �for n=1,2 , . . . ,N� is defined by

Rn��1, . . . ,�n� =
N!

�N − n�!� d�n+1¯� d�NPN,���1, . . . ,�N� ,

�2.3�

and gives the probability density of finding n eigenangles at
�1 , . . . ,�n, irrespective of the positions of the remaining ei-

genangles. For large N, the mean eigenangle spacing is given
in terms of the level density R1��� as D���= �R1����−1. To
describe the eigenangle fluctuations we first unfold the spec-
trum by

rj = �
0

�j

R1���d� . �2.4�

Then

Rn�r1, . . . ,rn� =
Rn��1, . . . ,�n�

R1��1� ¯ R1��n�
�2.5�

is the n-level correlation function for the unfolded spectra.
Note that R1�r�=1.

We remark here that �2.5� is usually considered in the
limit N→� with fixed values of all the difference variables
�rj −rk�. In this case the Rn describe the short-range fluctua-
tions. For long-range fluctuations �20�, we consider differ-
ence variables �rj −rk��N /2 for large N. We will give results
for both cases.

Finally, we mention that we will use the notation 	A
 for

N−1 tr A, F̄ for the ensemble average of F and f� for the
complex conjugate of f .

III. RESULTS FOR DYSON ENSEMBLE

We first give results for the potential-free case �i.e., V
=0�. In this case Dyson �1,17� has derived Rn for all n and N
and has given the short-range version of the unfolded corre-
lations Rn. With minor changes, we can write Rn applicable
for short-range as well as long-range fluctuations. Since level
density is a constant,

R1��� =
N

2�
, − � � � � � , �3.1�

the corresponding unfolding function is

rj =
N� j

2�
. �3.2�

The unfolded correlation function is given, for all three �
ensembles, as a quaternion determinant,

Rn,��r1, . . . ,rn� = Qdet�	N,��rj − rk�� j,k=1,. . .,n

= �det�	N,��rj − rk���1/2, �3.3�

where the last form gives the definition of the quaternion
determinant �Qdet�. Using the self-duality of the matrices
one can write determinantlike expansions in terms of the 	�.
The 	� in �3.3� are given by �1,17�

	N,2�r� = 
SN�r� 0

0 SN�r�
� , �3.4�

	N,1�r� = 
 SN�r� DN�r�
IN�r� − 
�r� SN�r�

� , �3.5�
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	N,4�r� = 
S2N�2r� D2N�2r�
I2N�2r� S2N�2r�

� , �3.6�

where

DN�r� = dSN�r�/dr , �3.7�

IN�r� = �
0

r

SN�r��dr�, �3.8�


�r� = r/2�r� , �3.9�

and

SN�r� =
sin��r�

N sin��r/N�
. �3.10�

The above results are valid for both long-range and short-
range fluctuations. However for short-range fluctuations �i.e.,
fixed r and N→� �, we can simplify �3.3�–�3.10� by replac-
ing 	N,��r� ,SN�r� ,DN�r� , IN�r� by their N→� limits
	��r� ,S�r� ,D�r� , I�r�, respectively, where S�r�=sin��r� /�r;
for �=4 the results are expressed in terms of S�2r�.

As an example of above results, we consider the two-level
cluster function,

Y2�r� = 1 − R2�r1,r2�, r = r1 − r2. �3.11�

We have

Y2�r� = �SN�r��2 − DN�r��IN�r� − 
�r��, � = 1

=�SN�r��2, � = 2

=�S2N�2r��2 − D2N�2r�I2N�2r�, � = 4, �3.12�

which for large �r� �typically, N /2�r�1� is given by �20�

Y2�r� =
1

�N2 sin2��r/N�
. �3.13�

Note also that in all three cases, �3.12� yields

�
−N/2

N/2

Y2�r�dr = 1. �3.14�

For fixed r and N→�, �3.13� and �3.14� give back the
known results

Y2�r� =
1

��2r2 , �r� � 1 �3.15�

and

�
−�

�

Y2�r�dr = 1. �3.16�

The number variance 
2�r� is the variance of the number of
eigenangles in intervals of length �2�r /N� with r�0 and is
derived from


2�r� = r − 2�
0

r

�r − s�Y2�s�ds . �3.17�

For 1�r�N−1, we find �20�


2�r� =
2

�2
ln�r̃� + � + 1 −
�2

8
�, � = 1

=
1

�2 �ln�r̃� + � + 1�, � = 2

=
1

2�2
ln�2r̃� + � + 1 +
�2

8
�, � = 4,

�3.18�

where r̃=2N sin��r /N�, and � is the Euler constant. See Ap-
pendix A for proof of �3.18�. Note that 
2�r�=
2�N−r�, as
expected. For r�N , r̃=2�r giving thereby the earlier results
�1,2� for short-range fluctuations.

IV. LEVEL DENSITY

In this section, we derive the level density for large N. In
particular, we show that in the case of weak periodic poten-
tials �V���=O�1�� the level density �N−1R1�, normalized to
unity, is again a constant for large N but has additional
O�N−1� corrections. For strong periodic potentials �V���
=O�N��, the level density departs from uniformity. As in
�15�, the density develops a band structure when the poten-
tial has deep minima.

The joint probability density P of �2.1� satisfies

1

�

�P
��1

= �1

2 �
j�1

cot
� j − �1

2 � − V���1��P . �4.1�

Integrating both sides of �4.1� over all variables except
��1 , . . . ,�n� we obtain an exact hierarchic set of relations
linking Rn+1 to Rn �18�. We discuss the relations for n�1 in
the next section. Here we consider �14� the n=1 case,

1

�

�R1���
��

=
1

2
�

−�

�

R2��,��cot
� − �

2
�d� − V����R1��� .

�4.2�

For large N ,R1=O�N� and R2�� ,��−R1���R1���=O�1�. Let

�̄��� = N−1R1��� �4.3�

be the density normalized to unity. We also define the prin-
cipal value integral

P̄��� =
1

2
�

−�

�

d��̄���cot
� − �

2
� , �4.4�

where �and in similar equations below� the principal value of
the integral is implied. Then, to order N−1, we have from
�4.2�,

P̄��� =
1

N
V���� +

1

�N

�

��
ln �̄��� , �4.5�

valid for regions where �̄����0.
To solve �4.5�, we introduce the transform �18�
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ḡ��� =
1

2
�

−�

�

d� cot
� − �

2
��̄��� , �4.6�

where � is a complex angle. Then

ḡ�� − i0� = P̄��� + i��̄��� , �4.7�

so that the imaginary part of �−1ḡ��− i0� gives back the den-
sity. We multiply both sides of �4.5� by �̄����cot��−�� /2�
and integrate over �. We note first that

1

2
�

−�

� �
−�

�

�̄����̄���cot
� − �

2
�cot
� − �

2
�d�d�

=
1

4
�

−�

� �
−�

�

�̄����̄���cot
� − �

2
��cot
� − �

2
�

− cot
� − �

2
��d�d� =

1

4
�

−�

� �
−�

�

�̄����̄����1

+ cot
� − �

2
�cot
� − �

2
��d�d� =

1

4
+ �ḡ����2,

�4.8�

and

�
−�

�

cot
� − �

2
� � �̄���

��
d� = 2

� ḡ���
��

. �4.9�

Here, in �4.8�, we have symmetrized the integrand in the first
step and used �cot A−cot B�cot�B−A�=1+cot A cot B in the
second step. Equation �4.9� follows by partial integration; we
use here the condition that �̄���= �̄��+2�� in nonbanded
cases or �̄���=0 at the end points in banded cases. Thus

1

4
+ �ḡ����2 =

1

N
�

−�

�

V����cot
� − �

2
��̄���d� +

2

�N

� ḡ���
��

.

�4.10�

Now using �4.7� in �4.10�, we find that the imaginary part
gives back �4.5� while the real part gives

��̄����2 =
1

4�2 +
1

�2N2 �V�����2 −
2

��2N2V����

−
1

N�2�
−�

�

V����cot
� − �

2
��̄���d� ,

�4.11�

where the terms (��ln �̄������2−2�ln �̄������
+2�V�����ln �̄�����) / ���N�2 are of order N−2 and have been
ignored. Also, the third term on right-hand side �rhs�, viz.
�2V���� /��2N2�, is of order N−2 for weak potentials and N−1

for strong potentials and will be ignored in subsequent dis-
cussions.

When V���=O�1�, the case of weak periodic potentials,
�̄���= �2��−1 to the leading order. Dropping O�N−2� terms in
�4.11�, we obtain

�̄��� =
1

2�
−

1

2�2N
�

−�

�

d�V����cot
� − �

2
� =

1

2�

+
1

2�2N

d

d�
�

−�

�

d��V��� − V����cot
� − �

2
� ,

�4.12�

giving the N−1-order corrections to the density. The density
in �4.12� is independent of � because of �-dependent choice
of w��� in �2.2�. To recover results for �-independent w’s,
we rewrite �4.12� as

�̄��� =
1

2�
+

2

��N

d����
d�

, �4.13�

where

���� =
1

4�
�

−�

�

d��ln w��� − ln w����cot
� − �

2
� .

�4.14�

For weight functions for which the integrals �−�
� w���d� and

�−�
� �ln w����d� exist, one can write

w��� = �D�ei���2, �4.15�

where D�z� is analytic and nonzero for �z��1 with D�0�
�0 �21�. D�z� is uniquely determined from w���. In this case
�4.14� can be simplified as

���� = arg�D�ei��� . �4.16�

In later sections we will deal with the case D�z�= �h�z��−1

where h�z� is a polynomial of order m��0� with no zeros for
�z��1. For h�z�=1, we obtain the Dyson ensemble. For
h�z�=z+c with �c��1, we obtain for large N,

�̄��� =
1

2�
−

2

��N

 1 + Re�ce−i��

1 + �c�2 + 2 Re�ce−i��� . �4.17�

As shown in Sec. VI, the result �4.17� is exact for �=2 and
valid for all N. We will also consider the Jacobi class of
weight functions

w��� = �1 − cos ��a�1 + cos ��b, �4.18�

where a ,b�−1 /2. In this case

D�z� = 2−�a+b��1 − z�a�1 + z�b �4.19�

and

�̄��� =
1

2�
+

a + b

��N
−

2

�N
�

n=−�

�

�a�N�� − 2n��

+ b�N�� − �2n + 1���� , �4.20�

where �N�x� has a peak of order N at x=0 such that �̄�0 and
width of order N−1 to ensure that its area is unity. In this case
���� as given by �4.16� is discontinuous at the zeros of w���.
In Sec. X we will give Monte Carlo verification of �4.17� and
�4.20�.

For strong potentials, say V���=Nu���, the third term on
the rhs of �4.11� gives the O�N−1� correction while other
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terms are of O�1�. Thus �4.14� can be written as

��̄����2 =
1

4�2�1 + 4�u�����2

− 4�
−�

�

u����cot
� − �

2 ��̄���d��
=

1

4�2�1 − 4�u�����2 + 4�
−�

�

�u����

− u�����cot
� − �

2 ��̄���d�� , �4.21�

correct to O�1� and similar to results given earlier for non-
Gaussian ensembles of Hermitian matrices �15�. Note that
the rhs is taken to be zero when �̄���=0, implying banded
density. In some cases �4.21� can be further simplified. For
example, for u���=� cos �,

�̄��� =
1

2�
�1 − 4�m1 − 4� cos � − 4�2 sin2 ��1/2,

m̄1 = �
−�

�

cos����̄���d� . �4.22�

We have developed an iterative numerical procedure for
solving �4.21�, which is similar to the procedure mentioned
in �15�. We start with an initial guess �̄0��� which we use on
the rhs of �4.21�. When the rhs is negative, we set �1=0;
otherwise the rhs gives �̄1

2. Next we normalize �̄1 to unity and
use it as the next guess to obtain �̄2. Iteration of this proce-
dure gives a sequence of �̄n which converges rapidly to the
final solution of �4.21�. The same method applied to �4.22�
converges more rapidly. We discuss the numerical results in
Sec. X.

Equation �4.12� with V=Nu gives the exact solution of
�4.21� in the nonbanded cases. To prove this we start with
�4.5� without the ln �̄ term, i.e.,

P̄��� = u���� . �4.23�

�The ln �̄ term is O�N−2� for weak potentials and O�N−1� for
strong potentials.� The general solution of �4.23� in the non-
banded cases is given by

�̄��� = A −
1

2�2�
−�

�

d�u����cot
� − �

2
� , �4.24�

where the constant A is 1 /2� from the normalization of �̄,
giving thereby �4.12�. Equation �4.24� comes about because

�
−�

�

d� cot
� − �

2
�cot
� − �

2
� = ��� − �� −

1

2�

�4.25�

and

�
−�

�

cot
� − �

2
�d� = 0. �4.26�

Equation �4.26� follows from �4.8�. To prove �4.25�, note that
�i� integral of both sides over � or � is zero �consistent with
�4.26��, �ii� the integral becomes � for �=�, and �iii� for �
��, �4.25� follows from the contour integral

1

2�i
�

�

dz

z

 z + ei�

z − ei��
 z + ei�

z − ei�� = 1, �4.27�

where the contour � is �z�=1 �anticlockwise direction� with
singularities at ei� and ei� avoided.

We consider the above example u=� cos � again with �
�0. We use �4.12�, or equivalently �4.24� to obtain the den-
sity in the nonbanded case. The density is positive for all �
for 0���1 /2 giving thereby the range for the nonbanded
case. For the banded case ���1 /2�, we return to �4.22� and
ask for solutions of �̄�0�=0, thereby giving m̄1 and hence �̄.
We have �11�

�̄��� = �2��−1�1 − 2� cos ��, 0 � � � 1/2,

=�−1���1 − cos ���1 − � − � cos ���1/2, 1/2 � � ,

�4.28�

and

m̄1 = − �, 0 � � � 1/2,

=
1

4�
− 1, 1/2 � � . �4.29�

For ��1, �̄��� is nonzero only in a narrow range near �
=�. We finally note that the matrix jpd in this example is
proportional to �det exp�−��NU��2.

V. HIERARCHIC RELATIONS

As mentioned in Sec. IV, the hierarchic relations are ob-
tained by integrating �4.1� over all but n variables. We have,
with Rn�Rn��1 , . . . ,�n� and Rn+1�Rn+1��1 , . . . ,�n+1�,

1

�

�Rn

�� j
= �1

2 �
k��j�

n

cot
� j − �k

2
� − V��� j��Rn

+
1

2
�

−�

�

d�n+1Rn+1 cot
� j − �n+1

2
� , �5.1�

valid for all j=1, . . . ,n. Using �4.3�–�4.5�, we can write
V��� j� to O�1� in regions where R1�� j��0, as

V��� j� =
1

2
�

−�

�

d�n+1R1��n+1�cot
� j − �n+1

2
�

−
1

�R1�� j�
�R1�� j�

�� j
, �5.2�

and thus �5.1� can be rewritten as
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R1�� j�
�

�

�� j

 Rn

R1�� j�
� =

1

2 �
k��j�

n

cot
� j − �k

2
�Rn

+
1

2
�

−�

�

d�n+1�Rn+1

− RnR1��n+1��cot
� j − �n+1

2
� .

�5.3�

Here, in the integrals �5.2� and �5.3�, and similar equations
below, the principal value should be taken as the integrand
diverges for �n+1=� j. �There is no such divergence in �5.1� as
Rn+1 vanishes for �n+1=� j.� Now we consider the unfolded
variables rj and the corresponding correlation functions Rn
defined in �2.4� and �2.5�. Then �5.3� can be written, for j
=1, . . . ,n, as

1

�

�Rn

�rj
=

1

2R1�� j�
�

k��j�

n

cot
� j − �k

2
�Rn

+
1

2R1�� j�
�

−N/2

N/2

drn+1�Rn+1 − Rn�cot
� j − �n+1

2
� ,

�5.4�

where the �’s are functions of the corresponding r variables,
and Rn�Rn�r1 , . . . ,rn�, Rn+1�Rn+1�r1 , . . . ,rn+1�.

We consider first short-range fluctuations, viz. those de-
scribed by Rn where all the � j’s are in the neighborhood of,
say, �. In this case, for large N, �� j −�k�R1�� j�→ �rj −rk� and
�R1�� j��−1cot��� j −�k� /2�→2�rj −rk�−1. Moreover the integral
in �5.4� can be divided into two regions for �n+1—in the
neighborhood of � and outside; the second integral goes to
zero since Rn+1−Rn→0 for rn+1→�. Thus, in the N→�
limit, we find

1

�

�Rn

�rj
= �

k��j�

n
Rn

rj − rk
+ �

−�

�

drn+1
�Rn+1 − Rn�

rj − rn+1
, �5.5�

valid for j=1, . . . ,n. Note that �5.5� becomes independent of
the potential V—weak or strong and is the same as those
found for Gaussian ensembles �24� as well as circular en-
sembles with uniform weight function �18�. Thus short-range
fluctuations are universal.

For long-range fluctuations, where some or all of the pair
variables �rj −rk� may be O�N�, we consider the case of weak
potentials. In this case R1���=N /2�+O�1� and therefore
�3.2� is replaced by

rj =
N� j

2�
+

2

��
��� j� , �5.6�

which follows from �2.4�, �4.3�, and �4.13�. Now �5.4� can be
written for large N as

1

�

�Rn

�rj
= �

k��j�

N
�

N
Rn cot
��rj − rk�

N
� +

�

N
�

−N/2

N/2

drn+1�Rn+1

− Rn�cot
��rj − rn+1�
N

� , �5.7�

again independent of V for V=O�1�. Equation �5.7� thus con-
stitutes a proof of the universality of long-range fluctuations
for the restricted class of weak potentials. Note that the long-
range universality breaks down for strong potentials. Note
also that �5.7� reduces to �5.5� for short-range fluctuations.

Our polynomial results in Secs. VI–IX confirm the above
results for weak potentials. We can also verify directly the
long-range results for all � for weak potentials by the
functional-derivative method �7�. Including the self-
correlation term, we have from �4.13�

S2��,�� � ��� − ��R1��� + R2��,�� − R1���R1���

= −
1

�

�R1���
�V���

= −
1

4�2� sin2
� − �

2
� , �5.8�

which after unfolding gives �3.13� for large �r� for weak po-
tentials. Note that �5.8� is valid also for strong potentials
with nonbanded density, similar to the results for non-
Gaussian ensembles �20,25�.

Finally we derive some two-point long-range results from
�5.8�, which were given earlier �20� for V=0. Let

Cp,q = �
−�

� �
−�

�

eip�eiq�S2��,��d�d� . �5.9�

From �5.8�, we have, for large N,

�
−�

� �
−�

�

eip�eiq� sin2
� − �

2
�S2��,��d�d�

= −
1

�
�p0�q0 + O
 1

N
� , �5.10�

so that

Cp+1,q−1 − 2Cp,q + Cp−1,q+1 =
4

�
�p0�q0 + O
 1

N
� .

�5.11�

Moreover

Cp,0 = C0,q = 0. �5.12�

Solving �5.11� and �5.12�, we obtain

Cp,q =
2�p�
�

�p+q,0 + O
 1

N
� . �5.13�

Equation �5.13� implies universal results for the covariance
N2�	Up
	Uq
 − 	Up
 	Uq
�, similar to those in the non-
Gaussian ensembles �20�.
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VI. POLYNOMIAL METHOD FOR THE UNITARY
ENSEMBLES

In this section, we consider the polynomial method for
deriving the correlation functions for �=2. For this, we use
polynomials orthogonal on the unit circle with weight func-
tion w��� as defined in �21,22�.

Let ���z� be polynomial of order �, satisfying the or-
thogonality condition,

�
−�

�

���ei������ei����w���d� = g����, �6.1�

where g� is the normalization constant and � ,�=0,1 ,2 , . . ..
Let

����� = �g�
−1w����1/2���ei�� �6.2�

be the corresponding orthonormal function. Then the joint
probability density of �2.1� can be written for �=2 as

PN,2��1,�2, . . . ,�N� =
1

N!
det�SN�� j,�k�� j,k=1,. . .,N. �6.3�

The kernel SN��1 ,�2� is given by

SN��1,�2� = ei�N−1���1−�2�/2�
�=0

N−1

�����1�������2� , �6.4�

and satisfies the integral conditions

�
−�

�

SN��,��d� = N , �6.5�

�
−�

�

SN��1,��SN��,�2�d� = SN��1,�2� . �6.6�

Proof of �6.3�, �6.5�, and �6.6� is outlined in Appendix B.
Thus Dyson’s theorem �1,17� can be used to derive the cor-
relation functions Rn. We have

Rn,2��1, . . . ,�n� = det�SN�� j,�k�� j,k=1,. . .,n. �6.7�

�Note that the quaternion determinant in this case is the or-
dinary determinant, since the matrix elements are quaternion
scalars.� Thus, the level density and the two-point correlation
function are given, respectively, by

R1��� = SN��,�� , �6.8�

R2��1,�2� = SN��1,�1�SN��2,�2� − SN��1,�2�SN��2,�1� .

�6.9�

The sum in �6.4� is related to �N��� by a Christoffel-
Darboux-type summation formula �21�,

SN��1,�2� =
Im�e−iN��1−�2�/2�N��1���N��2����

sin���1 − �2�/2�
, �6.10�

which in the �2→�1 limit gives the level density R1.
We now consider some special cases. For the Dyson en-

semble �w���=1�, we have ���z�=z� and g�=2� so that

SN��1,�2� =
sin�N��1 − �2�/2�

2� sin���1 − �2�/2�
, �6.11�

R1��� = SN��,�� =
N

2�
, �6.12�

and, in terms of the unfolded variables r= ��1−�2�N /2�,

SN�r� = lim
N→�

SN��1,�2�
�SN��1,�1�SN��2,�2��1/2 �6.13�

is given by �3.10�. We obtain thus the unfolded correlation
functions given by �3.3�, �3.4�, and �3.10�.

For w���= �h�ei���−2 with h�z� a polynomial of order m,
having no zeros for �z��1, the polynomials for ��m are
given by ���z�=z��h�ei���� �21�. In this case, we have �19�
for N�m,

SN��1,�2� =

sin
N��1 − �2�
2

+ ���1� − ���2��
2� sin���1 − �2�/2�

, �6.14�

where

���� = − arg�h�ei���, − � � � � � . �6.15�

Thus

R1��� = SN��,�� =
N

2�
+

1

�

�����
��

=
N

2�
−

1

2�
�ei�h��ei��

h�ei��

+ 
ei�h��ei��
h�ei��

��� , �6.16�

as given in Sec. IV; see �4.13� and �4.16�. Now using the
unfolded variable r= �N��1−�2�+2����1�−���2��� /2� as
given by �5.6�, we obtain �3.10� from �6.14� for N�m and
hence the unfolded correlation function Rn for �=2 as in
�3.3�, �3.4�, and �3.10�. Note that R1��� is a constant to lead-
ing order �as for the V=0 case�, but the O�1� correction is
required for the long-range correlations.

For the Jacobi class of weight functions �4.18�, the �� can
be written �21,22� in terms of the Jacobi polynomials
P�

�a−1/2,b−1/2��cos �� and P�−1
�a+1/2,b+1/2��cos ��, where �=Int���

+1� /2�. Now using the asymptotic forms of the Jacobi poly-
nomials, one can show that, for large �,

����� =
1

�2�
exp��i�2� + a + b�� − i���/2� , �6.17�

where �=−a ,a for −����0 and 0����, respectively.
For large N, we obtain again �6.14� with ����= ��a+b��
+a�� /2, ��a+b��−a�� /2 for −����0 and 0����.
Thus R1��� is given by

�̄��� =
1

2�
+

a + b

��N
−

2

�N
�

n=−�

�

�a��� − 2n��

+ b��� − �2n + 1���� , �6.18�

where we set �=2. Since R1��� cannot be negative, we re-
place � by �N in �6.18� to obtain �4.20�. Again, unfolding as
above, we obtain SN�r� and Rn.
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For more general weight functions satisfying �4.15�, it is
shown in �21� that the polynomials �� and the normalized
functions �� are given, respectively, by

���ei�� = ei����D�ei�����−1, �6.19�

����� = exp�i�� + i����� , �6.20�

for large �. These are generalizations of the above special
examples with the general result for ���� given by �4.14�.
When V=O�1� �as opposed to V=O�N��, we can use �6.20�
in �6.10� to obtain �6.14�. Thus, the level density R1��� is
given by �4.13� and the unfolded correlation functions by
�3.3�, �3.4�, and �3.10�. Note that in all of these cases the
potential V is weak and the density to the leading order is a
constant; the correction terms needed for the universality of
long-range correlations, may however contain
�-function-like terms at the zeros of w��� as in �4.20�.

For strong potentials, V=O�N�, the leading term in the
density will not be a constant and may also display banded
behavior �15�. In these cases �6.19� may not be applicable for
��N and then the above arguments fail. In such cases short-
range fluctuations are expected to be universal but the uni-
versality breaks down for long-range fluctuations; see �5.5�.
To show this by the polynomial methods, the following inte-
gral representation of the polynomials, similar to those for
the real line �14� may be useful:

���z� = �
−�

�

¯�
−�

� 
�
j=1

�

�z − ei�j��
�P�,2��1, . . . ,���d�1 ¯ d�� = det�z − U� , �6.21�

where we consider monic polynomials �i.e., coefficient of the
leading term is 1� and in the last form the average is over the
corresponding ensemble of �-dimensional unitary matrices
U. Proof of �6.21� is outlined in Appendix E. We do not
pursue here �6.21� for further investigation.

VII. POLYNOMIAL METHOD FOR THE ORTHOGONAL
ENSEMBLES (EVEN DIMENSION)

For Dyson ensemble with �=1, the correlation functions
were expressed in terms of eip�, where p=−�N−1� /2,−�N
−3� /2, . . . , �N−1� /2 �1�. Thus half-integral powers of ei�

were used for even N while integer powers were needed for
odd N. In this section, we consider the even case. For weight
function w���, we define the skew-orthogonal functions
�p�ei�� as

� � �p�ei�1��q�ei�2�w��1�w��2�
��1 − �2�d�1d�2 = gp�p+q,0,

�7.1�

where the 
 function is defined in �3.9�, gp is the normaliza-
tion constant with g−p=−gp=gp

� �pure imaginary�, and p ,q
= �1 /2, �3 /2, . . .. Here �p�ei�� involves the functions eik�

where k=−p+1,−p+2, . . . , p. Thus, for p�0, ei�p−1���p�ei��
is a polynomial in z=ei� of order 2p−1 and �−p�ei��
= ��p�ei����. We will refer to �p�ei�� as skew-orthogonal

polynomial. For w���=1, �p�ei��=eip�, and gp=2�i / p. It can
be shown �by a Gram-Schmidt construction� that the �p�ei��
are uniquely defined if the coefficient of eip� is fixed.

We define skew-orthonormal functions �p��� and their
integrals  p���,

�p��� = �g�p��−1/2w����p�ei�� , �7.2�

 p��� =� 
�� − ���p���d� , �7.3�

respectively. Then the corresponding skew-orthonormality
condition will be

� �p��� q���d� = sign�p��p+q,0. �7.4�

We define the kernels,

SN��1,�2� = �
p=1/2

�N−1�/2

��p��1� −p��2� − �−p��1� p��2�� ,

�7.5�

DN��1,�2� = − �
p=1/2

�N−1�/2

��p��1��−p��2� − �−p��1��p��2��

= −
�SN��1,�2�

��2
, �7.6�

IN��1,�2� = �
p=1/2

�N−1�/2

� p��1� −p��2� −  −p��1� p��2��

=� 
��1 − ��SN��,�2�d� , �7.7�

and

SN
† ��1,�2� = SN��2,�1� . �7.8�

We also define,

JN��1,�2� = − �
p=�N+1�/2

�

� p��1� −p��2� −  −p��1� p��2��

= IN��1,�2� − 
��1 − �2� . �7.9�

In terms of quaternion kernel,

	N,1��1,�2� = 
SN��1,�2� DN��1,�2�
JN��1,�2� SN

† ��1,�2�
� , �7.10�

the jpd �2.1� can be written as a quaternion determinant,

PN,1��1, . . . ,�N� =
1

N!
Qdet�	N,1�� j,�k�� j,k=1,. . .,N.

�7.11�

The quaternion kernel satisfies the Dyson’s conditions

SANDEEP KUMAR AND AKHILESH PANDEY PHYSICAL REVIEW E 78, 026204 �2008�

026204-8



� 	N,1��,��d� = N �7.12�

and

� 	N,1��1,�2�	N,1��2,�3�d�2 = 	N,1��1,�3� + !	N,1��1,�3�

− 	N,1��1,�3�! , �7.13�

where

! = 
1 0

0 − 1
� . �7.14�

Thus the n-level correlation function can be written as

Rn,1��1, . . . ,�n� = Qdet�	N,1�� j,�k�� j,k=1,. . .,n. �7.15�

Proof of �7.11�–�7.13� is similar to the corresponding proof
for Dyson ensembles �1,17� and is outlined in Appendix C.
Note that, for w���=1,  p���=�p��� / ip, giving thereby the
earlier Dyson results.

We now consider asymptotic-N results for weak periodic
potentials �V���=O�1��. We propose the ansatz that for poly-
nomials of asymptotic order ��p��1�,

�p��� =� �p�
2�i

exp�i�p� + 2������ , �7.16�

and then

 p��� =
1

p
� i�p�

2�
exp�i�p� + 2������ . �7.17�

From �7.9�, we have

SN��1,�2� = ���1 − �2� − lim
L→�

�
p=�N+1�/2

L

��p��1� −p��2�

− �−p��1� p��2�� , �7.18�

and therefore, for large N, using �7.16� and �7.17� in �7.18�
and summing the geometrical series, we obtain

SN��1,�2� =

sin
N��1 − �2�
2

+ 2����1� − ���2���
2� sin���1 − �2�/2�

.

�7.19�

Note that the � function in �7.18� is cancelled by a similar
term in the second term. The corresponding large-N results
for DN and IN are differentials and integrals of SN as in �7.6�
and �7.7�. Thus, the level density for weak potentials is given
by

R1��� = SN��,�� =
N

2�
+

2

�

��

��
, �7.20�

consistent with �4.13�. With r1 ,r2 defined by �2.4� and �7.20�
and r=r1−r2, we obtain the results �3.7�–�3.10�,

SN�r� = 
2�

N
�SN��1,�2� , �7.21�

DN�r� = 
2�

N
�2

DN��1,�2� , �7.22�

IN�r� = IN��1,�2� �7.23�


�r� = 
��1 − �2� , �7.24�

confirming thereby �3.3� and �3.5� for �=1.
Our ansatz is consistent with the result ��p=eip� ,����

=0� for V���=0. For a nontrivial example, we consider the
weight function w���= �ei�+c�−2 with c a constant. In this
case, we find that for p�3 /2, the �monic� polynomial �p,
the corresponding integrated function  p, and the normaliza-
tion constant gp are given, respectively, by

�p�ei�� =
exp�i�p − 1���

c�
�exp�i�� + c�2 −

c

c�
Ap exp�i�p − 1���

��exp�− i�� + c�� , �7.25�

�g�p� p��� =
exp�i�p − 1���

i�p − 1�c�

−
Ap

c� �
k=0

� 
− 1

c
�kexp�i�p + k − 1���

i�k + p − 1�
,

�7.26�

gp =
2�i

�p − 1��c�2
�1 − Ap� . �7.27�

Here

Ap
−1 = �

k=0

�
p − 1

�k + p − 1��c�2k . �7.28�

We also have for p=1 /2,

�1/2�ei�� = ei�/2, �7.29�

g1/2 =
2�i

�c���c�2 − 1�
ln

�c� + 1

�c� − 1
. �7.30�

For p�1, we obtain Ap=1− �c�−2 , gp=2�i / p�c�4 and thereby
a confirmation of �7.16� where e2i����= �c�+e−i�� / �c+ei��.

As in �6.21�, we have again an integral representation �14�
of the skew-orthogonal polynomials,

�p�ei�� = e−i�p−1���
−�

�

¯�
−�

� 
�
j=1

�

�ei� − ei�j��
�P�,1��1, . . . ,���d�1 ¯ d�� = e−i�p−1��det�ei� − U� ,

�7.31�

where �=2p−1 and we have used monic polynomials. In the
last form, the average is over the corresponding ensemble of
�-dimensional symmetric unitary matrices U. Proof of �7.31�
is outlined in Appendix E.
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VIII. POLYNOMIAL METHOD FOR THE ORTHOGONAL
ENSEMBLES (ODD DIMENSION)

For odd N, we again consider �p�ei�� where ei�p−1���p�ei��
is polynomial of order 2p−1 for p�0 and �−p�ei��
= ��p�ei����. Here p is integer and �p�ei�� consists of eik�

with k=−p+1,−p+2, . . . , p. The skew orthogonality is de-
fined by �7.1� for all p ,q�=0, �1, �2, . . .� except p=q=0.
Note that the polynomial �0 remains unpaired and its nor-
malization g0 is not determined by �7.1�. We introduce an
extra orthogonality condition �14,16�,

� �0�ei���p�ei��w���d� = g0�0,p, �8.1�

to fix the normalization g0 of �0. Note that g0 is real but the
gp for p�0 are imaginary. We define �p���
= �g�p��−1/2w����p�ei�� as in �7.2� and

 p��� =� 
�� − ���p���d� + cp, �8.2�

where the constant cp is given by

cp = −
� � 
�� − ���p�ei��w���w���d�d�

�g�p�� w���d�

, �8.3�

so that

� �0��� p���d� = 0. �8.4�

In general cp�0, but c0 is necessarily zero, and moreover
�7.4� remains valid for all p ,q except p=q=0.

We introduce additional kernels �14,16�

M��1,�2� = �0��1�, M†��1,�2� = �0��2� , �8.5�

���1,�2� =  0��1�, �†��1,�2� =  0��2� . �8.6�

Instead of �7.10�, we use the quaternion kernel,

	N,1��1,�2� = 
 SN��1,�2� + M��1,�2� DN��1,�2�
JN��1,�2� + ���1,�2� − �†��1,�2� SN

† ��1,�2� + M†��1,�2�
� , �8.7�

where SN ,DN ,JN ,SN
† are given in �7.5�–�7.9� with summation

over p=1, . . . , �N−1� /2. Then results �7.11�–�7.13� are valid
here also �see Appendix C� and therefore the correlation
function is given by �7.15�. For w���=1, skew-orthogonal
functions and their normalizations for p�0 have the same
form as in the preceding section, and, with p=0, we have
�0���=1 /�2� , 0���=� /�2� ,g0=2�. Equation �8.7� is
thus consistent with the corresponding Dyson results.

For the weight function w���= �ei�+c�−2, the polynomials
and their normalizations gp for p�2 are given by
�7.25�–�7.28�. We also have �0�ei��=1, �1�ei��= �exp�i��
+1 /c��, and g0=2� / ��c�2−1�, g1=2�i�c�−2 ln��c�2 / ��c�2−1��.
For p�1, we obtain gp=2�i / p�c�4, thereby confirming the
ansatz �7.16� for the odd case. The matrix-integral represen-
tation �7.31� is valid also for odd N for all p�0.

IX. POLYNOMIAL METHOD FOR THE SYMPLECTIC
ENSEMBLES

For �=4, we need �p�ei�� defined by the skew-
orthogonality relation

� ��p��e
i���q�ei�� − �p�ei���q��e

i���w���d� = gp�p+q,0,

�9.1�

where �p��e
i��=d�p�ei�� /d�, gp is the normalization constant

with g−p=−gp=gp
�, and �p�ei�� is the complex conjugate of

�p�ei��. As in Secs. VII and VIII, ei�p−1���p�ei�� can be cho-
sen to be polynomials of order 2p−1 in z=ei� for p�0 and
�−p�ei��= ��p�ei����. For symplectic ensembles, we need to
consider only the case of half-integral values of p. We can
also write the skew-orthogonal condition as

� ��p�����q��� − �p����q�����d� = sign�p��p+q,0,

�9.2�

where

�p��� =�w���
g�p�

�p�ei�� . �9.3�

We define the kernels,

S2N��1,�2� = �
p=1/2

N−1/2

��p���1��−p��2� − �−p� ��1��p��2�� ,

�9.4�

D2N��1,�2� = − �
p=1/2

N−1/2

��p���1��−p� ��2� − �−p� ��1��p���2��

= −
�S2N��1,�2�

��2
, �9.5�
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I2N��1,�2� = �
p=1/2

N−1/2

��p��1��−p��2� − �−p��1��p��2��

= �
�2

�1

S2N��,�2�d� , �9.6�

S2N
† ��1,�2� = S2N��2,�1� , �9.7�

and

	N,4��1,�2� = 
S2N��1,�2� D2N��1,�2�
I2N��1,�2� S2N

† ��1,�2�
� . �9.8�

Then jpd �2.1� can be written as

PN,4��1, . . . ,�N� =
1

N!
Qdet�	N,4�� j,�k�� j,k=1,. . .,N. �9.9�

Also 	N,4 satisfies the Dyson’s conditions,

� 	N,4��,��d� = N , �9.10�

and

� 	N,4��1,�2�	N,4��2,�3�d�2 = 	N,4��1,�3� . �9.11�

Therefore we obtain the n-level correlation functions,

Rn,4��1, . . . ,�n� = Qdet�	N,4�� j,�k�� j,k=1,. . .,n. �9.12�

Proof of �9.9�–�9.11� is similar to the corresponding proof for
the potential free case �1,17� and is outlined in Appendix D.
For w���=1, �p�ei��=eip� , gp=2�ip, and then we recover
the corresponding Dyson results �1,17�.

Now, for weak potentials we propose the ansatz for the
asymptotic polynomials p�1 that

�p��� =
1

�4�i�p�
exp�i�p� + ������ , �9.13�

and, then as in Sec. VII, we have for large N,

S2N��1,�2� =
sin�N��1 − �2� + ����1� − ���2���

4� sin���1 − �2�/2�
.

�9.14�

Thus the level density is

R1��� = S2N��,�� =
N

2�
+

1

2�

��

��
, �9.15�

and S2N�2r�= �2� /N�S2N��1 ,�2�=sin�2�r� /2N sin��r /N�
confirming again the universality of �3.3� and �3.6�. Here the
unfolding function �5.6� is obtained from �2.4� and �9.15�.

For a confirmation of our ansatz, we consider the weight
function w���= �ei�+c�−2 with c a constant. In this case, we
find that the polynomials and their normalizations gp for p
�3 /2 are given by

�p�ei�� = 
 exp�− i�� + c�

c� �2

exp�ip�� −
2�i�2p − 3�
�c�2c�gp−1

�p−1�ei�� ,

�9.16�

gp =
2�i

�c�4 
2p�1 + �c�2� − 4 −
2�i�2p − 3�2

�c�2gp−1
� , �9.17�

and �1/2�ei��=ei�/2, g1/2=2�i / ��c�2−1�. For p�1, we obtain
gp=4�ip / �c�2 and therefore �9.13�.

For the weight function w���=1+� cos � also �where
−1���1� the skew-orthogonal polynomials can be worked
out. We have, again for p�3 /2,

�p�ei�� = eip� − ��p − 1/2�
g1/2

gp−1
�p−1�ei�� , �9.18�

gp = g1/2
2p − �2�p − 1/2�2 g1/2

gp−1
� , �9.19�

and �1/2�ei��=ei�/2 , g1/2=2�i. Note that for p�1, we obtain
gp=2�ip�1+�1−�2� and therefore �9.13� where e2i����

= �ei�+�−1�1+�1−�2�� / �e−i�+�−1�1+�1−�2��.
Finally, we have again an integral representation �14� of

the skew-orthogonal �monic� polynomials,

�p�ei�� = e−i�p−1���
−�

�

¯�
−�

� 
�
j=1

�

�ei� − ei�j�2�
�P�,4��1, . . . ,���d�1 ¯ d��

= e−i�p−1��det�ei� − U�2, �9.20�

where �= p−1 /2. In the last form, the average is for �=4
type ensemble. See Appendix E for proof of �9.20�.

X. MONTE CARLO STUDY OF EIGENANGLE
FLUCTUATIONS

In this section, we develop numerical techniques based on
Monte Carlo �MC� and Langevin dynamics to simulate the
circular ensembles. The methods are similar to those devel-
oped in �15� for non-Gaussian ensembles of Hermitian ma-
trices and are based on Dyson’s Brownian motion models of
eigenvalues �1,13�.

The jpd of eigenangles �2.1� can be written in the form

PN,���1, . . . ,�N� = ce−�W, �10.1�

where the potential W,

W��1, . . . ,�N� = �
l=1

N

V��l� − �
j�k

ln�sin
�� j − �k�

2
� ,

�10.2�

consists of a repulsive two-dimensional Coulomb �logarith-
mic� potential and a one-body periodic potential V���. Note
that, for given weight function w���, the potential V��� is
obtained from �2.2�. Using a fictitious time ", we can inter-
pret the jpd �10.1� as the equilibrium �"→�� density of the
Langevin equations,
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d� j

d"
= −

�W

�� j
+ � j�"� . �10.3�

Here the � j�"� are �real� uncorrelated Gaussian white noises
with mean and covariance given, respectively, by

�̄ j�"� = 0, �10.4�

� j�"1��k�"2� = 2�−1��"1 − "2�� jk, �10.5�

where the bar denotes ensemble averaging. Equation �10.3�
can give an efficient method for generating eigenvalues in
such ensembles, but one must carefully account for the un-
physical level crossing induced by the discretization proce-
dure. A faster method �15�, which we follow here, relies on
the stochastic Monte Carlo �MC� sampling of the eigenvalue
space in the jpd �10.1�.

For MC simulations of eigenangles we start with an initial
set of � j variables �j=1, . . . ,N� in the interval �0,2��. A
convenient choice for the initial spectra has constant spacing
2� /N. A stochastic move assigns, to a randomly chosen �k, a
new value �k� between 0 and 2� with a uniform probability.
The move is accepted with probability e−�#W, where #W is
the change in potential W resulting from the move. An MC
step is defined as N moves, whether successful or not. Equi-
librium is reached rapidly. In our calculations we find the
equilibrium after 5000 MC steps for N=201 and then we
choose spectrum after every 20 MC steps. We have analyzed
ensembles of 10 000 spectra for the potentials discussed be-
low.

As a check, we have done calculations for V=0 �viz., the
Dyson ensembles� and found excellent agreement for R1���
and 
2�r� with the corresponding analytic results �3.1� and
�3.18�; the agreement is similar to the results for multiply
kicked rotors in our earlier paper �20�. Here we show results
for three examples of weak potentials: w���= �5
+4 cos ��−1 , �sin �� and �sin 2��. The first of three weight

functions corresponds to c=2 in �4.15� with D�z�= �z+c�−1

and the density given by �4.17�. The second is an example of
the Jacobi weight function �4.18� with a=b=1 /2 and the
corresponding density is given by �4.20� with �N-like terms
at the zeros of w���. The third weight function has four zeros
and therefore four �N-like terms in the density. In this case,
D�z�= �1−z4�1/2 /2 and the constant term in the density is
�1+4 /�N� /2�. The MC results along with the theory are
shown in Figs. 1, 2, and 3, respectively. To illustrate the
effect of the �N terms, we have shown in Fig. 4 the cumula-
tive density,

F̄��� = �
0

�

�̄����d��, �10.6�

for w���= �sin ��. Note that F̄��� in this case is approximated
well by two �closely spaced� parallel straight lines as in Fig.

4�b� instead of one straight line �F̄���=� /2�� as in Fig. 4�a�.
Indeed the theory as given in �4.20� predicts

F̄���/N = 
1 +
2�a + b�

�N
� �

2�
−

a

�N
, 0 � � � � ,

=
1 +
2�a + b�

�N
� �

2�
−

a + 2b

�N
, � � � � 2� , �10.7�

and is in agreement with Fig. 4�b�. For the third weight func-

tion F̄��� will consist of four �closely spaced� parallel
straight lines. For 
2�r�, we obtain departures from �3.18� for
r�N /2 if we do unfolding by r=N� /2�, but we find excel-

lent agreement with the theory if we use r=NF̄��� to order
one. We have shown the 
2�r� results in Figs. 5 and 6 for the
first two potentials.

In Figs. 7 and 8 we show densities for strong potentials
V���=�N cos � ,�N ln�5+4 cos ��, respectively. The theo-
retical prediction for the first potential is given by �4.28�. For
the second potential, the theoretical prediction is obtained by

0 1 2

θ/π

0.158

0.16

0.162

ρ(
θ)

β = 1
β = 2
β = 4

FIG. 1. �̄��� vs � for w���= �5+4 cos ��−1. Solid lines are the-
oretical curves of �4.17� and the squares, circles and triangles de-
note the density from MC data for �=1,2 ,4, respectively.

0 0.5 1 1.5 2

θ/π
0.14

0.145

0.15

0.155

0.16

0.165

ρ
(θ

)

β = 1
β = 2
β = 4

FIG. 2. �̄��� vs � for w���= �sin ��. Note the dips in the density
at �=0,� ,2� as predicted by �4.20�.
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numerical integration of �4.21�. In both cases, the agreement
is excellent. Note that, for large � ��=5 case in Figs. 7 and
8�, the density becomes banded. We have checked the short-
range fluctuations for 
2�r� and found them to be in agree-
ment with the corresponding result �1�r�N� in �3.18�.
However, the long-range fluctuations show departures.

XI. UNIVERSAL CONDUCTANCE FLUCTUATIONS

In this section, we turn briefly to the conductance fluctua-
tions in mesoscopic systems �5,7�. In particular we deal with
the effect of non-uniformity of the ensemble on the universal
conductance fluctuations �UCF� for quantum dots.

We consider the case of large number of incoming �N1�
and outgoing �N2=N−N1� channels; N1 ,N2�1. We take the
above ensembles as ensembles of scattering matrices �U�. In
units of e2 /h the conductance can be written �7� as

g = �
n=1

N1

�
m=N1+1

N

�Unm�2. �11.1�

We can also write it as

g = tr�P1UP2U†� = N1 − tr�$A$†A� =
N1N2

N
− �

�,�
exp�i���

− ������A���2, �11.2�

where P1 and P2 are, respectively, N1- and N2-dimensional
projection matrices with matrix elements P1�j ,k�=� jk for j
�N1 and zero otherwise and P2= I− P1. In the second step of
�11.2� we have used the diagonal representation, U=W$W†,
where $ is the diagonalized form of U �i.e., $��=ei������
and W is the unitary matrix that diagonalizes U �being or-
thogonal, unitary and symplectic for �=1, 2, and 4, respec-
tively�; we have also introduced A=W†P1W, which is P1
matrix in the eigenbasis of U. In the last step, we have writ-
ten the matrix A as A= 	A
+�A where 	A
=N−1 tr A=N1 /N.
Note also that 	��A�2
=N1N2 /N2, as used below.

Since there is no correlation between eigenvalues and
eigenvectors �as implied by the invariance of the ensembles�,
the ensemble averages over their distributions can be done
separately. Thus the matrix elements �A�� are independent of
the eigenangles. Moreover the jpd �2.1� is symmetric in all
eigenangles, as also is the jpd of the matrix elements �A��;
for example,

	��A�2
 = �N − 1���A���2 + ��A���2 �11.3�

and

��
�

ei���2
= N + N�N − 1�ei���−���, �11.4�

where ���. Using the independence and symmetry of the
jpd, we can write the ensemble average �ḡ� and variance
�var�g�� of the conductance as

ḡ = N�1 − ei���−����
N1N2

N2 − ��A���2� , �11.5�

and

var�g� = �1 − ei���−����2var
�
�

��A���2�
+ �

���
�

�����

�ei���−���ei����−����

− ei���−��� ei����−�������A���2��A�����
2

= N�1 − ei���−����2�var��A���2 + �N

− 1�cov���A���2,��A���2�� + N2�N − 1�2

��ei���−���ei����−���� − ei���−��� ei����−�����

���A���2 ��A�����
2

+ N�N − 1��N − 2��N − 3��ei���−���ei����−����

− ei���−��� ei����−�����cov���A���2, ��A�����
2� + N�N

− 1��N − 2�cov���A���2, ��A����
2��ei�2��−��−����

+ e−i�2��−��−���� + 2ei���−��� − 4ei���−��� ei���−�����

+ N�N − 1��1 + e2i���−��� − 2�ei���−����2�var���A���2� ,

�11.6�

where in the last step �� ,�� and ��� ,��� are distinct pairs of
indices unlike the first step. Also, cov denotes covariance.
Equations �11.5� and �11.6� are exact, valid for all N. Using
the moments

m̄k =� exp�ik���̄���d� , �11.7�

and the averages �2�

�A�� = 0, �11.8�

0 0.5 1 1.5 2

θ/π
0.14

0.145

0.15

0.155

0.16
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β = 1
β = 2
β = 4

_
FIG. 3. �̄��� vs � for w���= �sin 2��. The dips in �̄��� are at �

=0,� /2,� ,3� /2,2� corresponding to the zeros of w���.
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��A���2 =
2

�N + 2
	��A�2
 , �11.9�

we have for large N,

ḡ = �1 − �m̄1�2�
N1N2

N
. �11.10�

Similarly �2�, we have �again for large N�,

��A���2 =
1

N
	��A�2
 , �11.11�

�A���A�� = −
2

�N2 	��A�2
 , �11.12�

var���A���2� = 2
 2

�N
	��A�2
�2

, �11.13�

cov���A���2,��A���2�
var���A���2�

= O
 1

N2� , �11.14�

var���A���2� =
2

�N2 	��A�2
2, �11.15�

cov���A���2, ��A����
2�

var���A���2�
=

1

N

 	��A�4


	��A�2
2 − 2�
=

1

N

N1N2

N4 �N1 − N2�2 − 1� ,

�11.16�

cov���A���2, ��A�����
2�

var���A���2�
= O
 1

N2� , �11.17�

so that var�g� is given by

var�g� = 
 2

�
�1 − 2�m̄1�2 + 2�m̄1�4� + 2�m̄1�2C1,−1�N1

2N2
2

N4

−
2

�
�m̄2�m̄1

��2 + m̄2
��m̄1�2 − �m̄2�2�

N1
2N2

2

N4 +
2

�
�m̄2�m̄1

��2

+ m̄2
��m̄1�2 + 2�m̄1�2 − 4�m̄1�4�

N1N2

N4 �N1 − N2�2,

�11.18�

where C1,−1 is defined in �5.9�.

0 1 2

θ/π
0

0.4

0.8

F(
θ)

0.99 1 1.01

0.495

0.5

0.505

β = 1
β = 2
β = 4

_

(a) (b)

FIG. 4. F̄��� vs � for w���= �sin ��. �a� The entire range of � and
�b� the inset box of �a�.
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FIG. 5. 
2�r� vs r for w���= �5+4 cos ��−1 with unfolding �a�
without the O�N−1� term in �̄��� and �b� with the O�N−1� term.
Agreement is found in �b� with theory �3.18� for all r.
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Note that for Dyson’s circular ensemble the eigenangle
density �3.1� is uniform and therefore m̄p=�p0. Thus our re-
sults in �11.5� and �11.18� reproduce the average conduc-
tance ḡ=N1N2 /N and the universal �UCF� result var�g�
= �2N1

2N2
2 /�N4�, respectively �7�. Similarly for weak periodic

potentials main part of the density continues to be uniform,
giving thereby the same results to leading order in N. How-
ever for strong periodic potentials �banded as well as non-
banded cases� var�g� departs from the universality. Note that,
from �5.13�, C1,−1=2 /� for weak potentials and also for the
nonbanded case of strong potentials. But, whenever m̄1�0,
variance of g departs from the UCF. This breakdown of the
universality requires separate investigation which we do not
pursue here.

For Monte Carlo �MC� verification of the above results,
we have generated ensemble of matrices U from the diagonal
representation U=W$W†. Here we obtain $ from the MC
simulations of Sec. X, while W’s are obtained as diagonaliz-
ing transformations of matrices belonging to the Gaussian

ensembles. Thus, we can generate the scattering matrices
corresponding to different weight functions. The right N1
�N2 upper block of the scattering matrix on multiplication
with its Hermitian conjugate gives the transmission matrix.
Let Tj be the transmission eigenvalues; then g=�Tj. We have
studied the conductance for the potential V���=�N cos � �as
in Secs. IV and X� for several values of �. For this potential,
ḡ is given by �4.29� and �11.10�. For var�g�, we need m̄2 also,

m̄2 = 0, 0 � � � 1/2,

=
1 −
1

2�
�2

, 1/2 � � . �11.19�

Then for the nonbanded case �0���1 /2� we have

var�g� =
2

�

�1 + 2�4�

N1
2N2

2

N4 + 2�2�1 − 2�2�
N1N2

N4 �N1 − N2�2� ,

�11.20�

while for the banded case ���1 /2� we obtain

var�g� = � 1

��2
1 −
1

2�
+

5

64�2� + 2
 1

4�
− 1�2

C1,−1�N1
2N2

2

N4

+
4

�
�
1 −

1

2�
�2
1 −

1

4�
�2

+ 
1 −
1

4�
�2

��1 − 2
 1

4�
− 1�2��N1N2

N4 �N1 − N2�2. �11.21�

We have done calculations with 50 000 scattering matrices of
dimension N=200. The MC results for ḡ and var�g� are
shown in Figs. 9 and 10, respectively, and are consistent with
our corresponding analytical results �11.10� and �4.29� and
�11.20� and �11.21�. Note that the first derivative of ḡ is
continuous at �=1 /2, showing thereby a smooth curve in
Fig. 9. On the other hand, the first derivative of var�g� is
discontinuous at �=1 /2 as seen in Fig. 10�a�. Figure 11
gives the density of the transmission eigenvalues T for �
=0, 0.25, and 2.5 for �=1; almost same curves are obtained
for �=2. The theory ���T�= ��T�1−T��−1/2� �7� is for �=0.
Departures from this are seen for ��0 and in particular
��T�=0 for T�Tc in the banded cases.

XII. CONCLUSION

Dyson introduced circular ensembles with uniform weight
function as model for quantum chaotic systems. We have
studied circular ensembles with nonuniform weight functions
which are also relevant for quantum chaotic systems and are
useful in other branches of physics.

We have shown that the level correlation functions can be
written in terms of polynomials on the unit circle—
orthogonal for �=2 and skew orthogonal for �=1,4. For
�=2, we have used results from �21�, whereas for �=1,4 we
have worked out the skew-orthogonal polynomials for some
weight functions. For weak periodic potentials, we study the
asymptotic behavior of the polynomials and show that short-
range and long-range fluctuations follow the universal result
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FIG. 6. 
2�r� vs r for w���= �sin �� with unfolding in �a� and �b�
as described in Fig. 5.
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of uniform case. We elucidate the same result by the consid-
eration of hierarchic relations among correlation functions
and Monte Carlo simulations of the ensembles.

For strong potentials the density deviates from uniformity
and in some cases develops banded behavior. We show this
by analytic and Monte Carlo calculations. However, for these
potentials, only the short-range fluctuations follow the uni-
versal behavior of the uniform case and not the long-range
fluctuations.

Breakdown of universality for long-range fluctuations is
also found in the study of conductance fluctuations. We have
shown by analytic and numerical calculations that the circu-
lar ensembles give the UCF result for weak potentials but
deviates from UCF for strong potentials.
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APPENDIX A: PROOF OF (3.18)

From �3.14� and �3.17� we note that


2�r� = 2r�
r

N/2

Y2�s�ds + 2�
0

r

sY2�s�ds

=
2r

��N
cot
�r

N
� + 2�

r�

r

sY2�s�ds + 2�
0

r�
sY2�s�ds

=
2

��2 ln
 sin��r/N�
sin��r�/N�� +

2r�

��N
cot
�r�

N
�

+ 2�
0

r�
sY2�s�ds =

2

��2 ln r̃ −
2

��2 ln�2�r�� +
2

��2

+ 2�
0

r�
sY2�s�ds =

2

��2 ln r̃ + 
sr
2 �r�� −

2

��2 ln�2�r��

=
2

��2 ln r̃ + C�. �A1�

Here in the second step we have introduced r���N� such that
1�r��r�N /2, in the second and third steps we have used
�3.13� for Y2 in integrals with s�r�, in the fourth step we
have replaced sin��r� /N�→�r� /N, and in the fifth step we
have used the short-range result �1,2�


sr
2 �r�� =

2

��2 ln�2�r�� + C�. �A2�

The constant C� in �A1� and �A2� are ��+1� /�2 ,2��+1
−�2 /8� /�2 and �ln 2+�+1+�2 /8� /2�2, respectively, for
�=2,1 ,4.

APPENDIX B: PROOF OF (6.3), (6.5), and (6.6)

For �6.3�, we use the Vandermonde determinant �1�

det�ei�����=0,1,. . .,N−1
�=1,2,. . .,N

= �
j�k

�ei�j − ei�k� . �B1�

Since addition of a linear combination of rows does not af-
fect the determinant, we can rewrite �B1� as

det����ei�����=0,1,. . .,N−1
�=1,2,. . .,N

% �
j�k

�ei�j − ei�k� . �B2�

Multiplying the above equation by its complex conjugate and
using �� of Sec. VI, we have

�
l

w��l��
j�k

�ei�j − ei�k�2 = det��w�������ei�����=0,1,. . .,N−1
�=1,2,. . .,N

†
det��w�������ei�����=0,1,. . .,N−1

�=1,2,. . .,N

= det
�
�=0

N−1

����� j�������k��
j,k=1,2,. . .,N

% det�SN�� j,�k�� j,k=1,2,. . .,N, �B3�

where † denotes the Hermitian conjugate. Equation �6.3� is
thus obtained from �2.1� and �B3�, the normalization con-
stant being �N!�−1. Equations �6.5� and �6.6� follow from the
orthogonality condition �6.1�.

APPENDIX C: PROOF OF (7.11)–(7.13) FOR EVEN AND
ODD N

We first consider the even-N case of �=1. We start with
proof of �7.11�. For this we note �1� that for �1��2� . . . ..
��N,

�
j�k

�exp�i� j� − exp�i�k�� = i−N�N−1�/2 det�eip�j� % det��p�ei�j�� ,

�C1�

where p=−�N−1� /2,−�N−3� /2, . . . , �N−1� /2 and j
=1,2 , . . . ,N. Then we can write jpd �2.1� for �=1 as

PN,���1, . . . ,�N� % det
�−p��k�
�p��k�

� , �C2�

where row index p=1 /2,3 /2, . . . , �N−1� /2, column index
k=1,2 , . . . ,N, and the �p are defined in �7.2�.

Now, consider the 2N�2N matrix,
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G = �SN�� j,�k� DN�� j,�k�
IN�� j,�k� SN

† �� j,�k�
�

2N�2N

= 
�q�� j� �−q�� j�
 q�� j�  −q�� j�

�
2N�N


  −p��k� − �−p��k�
−  p��k� �p��k�

�
N�2N

,

�C3�

where indices p ,q=1 /2,3 /2, . . . , �N−1� /2 and j ,k

=1,2 , . . . ,N. From �C3�, we see that the rank of the matrix G
is N and hence the N rows �IN�� j ,�k� SN

† �� j ,�k�� of matrix G
can be expressed as linear combination of the N rows
�SN�� j ,�k� DN�� j ,�k��. Thus for the quaternion matrix,

QN1 = �	N,1�� j,�k�� j,k=1,2,. . .,N, �C4�

the ordinary determinant of corresponding 2N�2N matrix is
given by

θ/π
0

0.5

1

ρ(
θ)

α = 0.05
α = 0.2
α = 5

V(θ) = αNcos θ

FIG. 7. �̄��� vs � for V���=�N cos � with �=0.05,0.2,5 for
�=1. Solid lines show the analytic result �4.28�.
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ρ(
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α = 0.05
α = 0.5
α = 5

V(θ) = α N ln(5+4cosθ)

FIG. 8. �̄��� vs � for V���=�N ln�5+4 cos �� with �
=0.05,0.5,5 for �=1. Solid lines are from numerical integration of
�4.21�.
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FIG. 9. ḡ vs � for several values of N1. �a� and �b� correspond,
respectively, to �=1,2.
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FIG. 10. �a� and �b� show var�g� vs � for N1=N2, and vs N1 for
�=0.25, respectively. Solid squares and circles denote �=1 and 2,
respectively. The solid lines correspond to the analytical results. In
�a�, we have used C1,−1=2 /� for 0���1 /2, but for ��1 /2 we
have estimated trace covariance C1,−1 from the MC calculations.
The agreement with �11.20� and �11.21� is good.
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det�QN1� = det�SN�� j,�k� DN�� j,�k�
JN�� j,�k� SN

† �� j,�k�
�

= det� SN�� j,�k� DN�� j,�k�
− 
�� j − �k� 0

� = det�
�� j

− �k��det�DN�� j − �k�� % �PN,1��1,�2, . . . ,�N��2,

�C5�

as in the uniform case of COE �1�. We also note that the
quaternion matrix, QN1, is self-dual. Thus square of the
quaternion determinant �Qdet� is the corresponding ordinary
determinant of �C5�. This completes the proof of �7.11�.

The proof of �7.12� and �7.13� follows from the skew-
orthogonality condition �7.1�. Eq. �7.12� can be verified di-
rectly, since DN�� ,��=0 and JN�� ,��=0. For �7.13�, we note
that

SN � SN = SN,

DN � SN = SN � DN = DN,

JN � SN = SN � JN = 0,

JN � DN = DN � JN = 0, �C6�

where the � operation is the convolution integral,

X � Y =� X��1,�2�Y��2,�3�d�2. �C7�

Note here that the normalization in �7.11� is obtained from
�7.12� and �7.13�.

For odd N, the 2N�2N matrix G is defined as

G = �SN�� j,�k� + M�� j,�k� DN�� j,�k� + �M�� j,�k�M†�� j,�k�
IN�� j,�k� + �−1 SN

† �� j,�k� + M†�� j,�k�
�

2N�2N

=�
���0�� j� �q�� j� �−q�� j�

1
��

 q�� j�  −q�� j� �
2N�N

�
1
��

���0��k�

 −p��k� − �−p��k�
−  p��k� �p��k�

�
N�2N

. �C8�

Here � is arbitrary, p ,q=1,2 , . . . , �N−1� /2 and j ,k=1,2 , . . . ,N. Thus the N rows �IN�� j ,�k�+�−1 SN
† �� j ,�k�+M†�� j ,�k�� are

linear combination of the N rows �SN�� j ,�k�+M�� j ,�k� DN�� j ,�k�+�M�� j ,�k�M†�� j ,�k��. Using this we have, for small �,

det� SN�� j,�k� + M�� j,�k� DN�� j,�k� + ��0�� j��0��k�
JN�� j,�k� + ��� j,�k� − �†�� j,�k� SN

† �� j,�k� + M†�� j,�k�
�

= det� SN�� j,�k� + M�� j,�k� DN�� j,�k� + ��0�� j��0��k�
− �−1 − 
�� j − �k� + ��� j,�k� − �†�� j,�k� 0

� = det�DN�� j,�k� + ��0�� j��0��k��det��−1

+ 
�� j − �k� −  0�� j� +  0��k�� . �C9�
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FIG. 11. Density of transmission eigenvalues vs T for
�=1,N1=100 with V���=�N cos � and �=0,0.25,2.5. Solid line
corresponds to 1 /��T�1−T� �7�.
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Here the first term is proportional to ��PN,1��1 , . . . ,�N��2 and
the second term after subtracting the first column from each
of the other columns is �−1 det�1+O��� ,
�� j −�k�−
�� j
−�1�− 0�� j�+ 0��k��, which is independent of the �’s in
the leading order �1�. Thus, in the limit �→0, we obtain
det�QN1�% �PN,1�2, completing thereby the proof of �7.11� for
odd N.

Proof of �7.12� follows from the skew-orthogonality con-
dition �7.1� and the orthogonality condition �8.1�. To verify
�7.13�, note that �C6� is valid for odd N also. The other
integrals needed are

M � SN = SN � M = 0, � � SN = SN � �† = 0,

M � DN = DN � M = 0, � � DN = DN � �† = 0,

M � IN = IN � M = 0, M � M = M ,


 � M = � � M = �, �† � M = 0, �C10�

giving thereby �7.13� for odd N.

APPENDIX D: PROOF OF (9.9)–(9.11)

For �=4, we note that �1�

�
l

w��l��
j�k

�exp�i� j� − exp�i�k��4

= det
 eip�j peip�j

e−ip�j − pe−ip�j
��

l

w��l�

% det
 �p�� j� �p��� j�
�−p�� j� �−p� �� j�

� , �D1�

where p=1 /2,3 /2, . . . ,N−1 /2, j=1,2 , . . . ,N, and the �p
are defined in Sec. IX. Then, for the N�N quaternion matrix

QN4 = �	N4�� j,�k�� j,k=1,2,. . .,N, �D2�

the ordinary �2N�2N� determinant is

det QN4 = det�
�p��� j� �−p� �� j�
�p�� j� �−p�� j�

�
 �−q��k� − �−q� ��k�
− �q��k� �q���k�

��
= det
�p��� j� �−p� �� j�

�p�� j� �−p�� j�
�2

% �PN,4��1,�2, . . . ,�N��2.

�D3�

Here p and k are column indices while q and j are row
indices. Using the fact that QN4 is self-dual and working out
the normalization constant we obtain �9.9�.

Equation �9.10� follows directly from the skew-
orthogonality condition �9.10�, since D2N�� ,��=0 and
I2N�� ,��=0. We also note that, with the definition �C7�, we
have

S2N � S2N = S2N,

D2N � S2N = S2N � D2N = D2N,

I2N � SN = S2N � I2N = 0,

I2N � D2N = D2N � I2N = 0, �D4�

which give �9.11�.

APPENDIX E: PROOF OF MATRIX-INTEGRAL
REPRESENTATIONS

In this appendix we outline a proof of the matrix-integral
representations �6.21�, �7.31�, and �9.20� of the polynomials.
The proofs are similar to those for the polynomials on the
real line; see Appendix B of �14�.

We start with the �=2 case. To prove that the polynomials
�6.21� are orthogonal, we have to show that, for �
=0,1 , . . . ,�−1,

� e−i�����ei��w���d� = 0. �E1�

For notational convenience we write the Vandermonde deter-
minant �B1� as

#N � #N�ei�1,ei�2, . . . ,ei�N� = det�ei�����=0,1,. . .,N−1
�=1,2,. . .,N

.

�E2�

Then, the left-hand side �lhs� of �E1� is proportional to

� d�1 ¯ d��+1e−i���+1#��e−i�1, . . . ,e−i���#�+1�ei�1, . . . ,ei��+1��
l=1

�+1

w��l�

=
1

� + 1
� d�1 ¯ d��+1D�+1

��� �e−i�1, . . . ,e−i��+1�#�+1�ei�1, . . . ,ei��+1��
l=1

�+1

w��l� , �E3�

where D�+1
��� is the determinant,
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D�+1
��� �ei�1, . . . ,ei��+1� = det�

1 1 ¯ 1

ei�1 ei�2
¯ ei��+1

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

ei��−1��1 ei��−1��2
¯ ei��−1���+1

ei��1 ei��2
¯ ei���+1

�
��+1����+1�

. �E4�

The rhs of �E3� is obtained by symmetrization of the lhs. The
determinant in �E4� is zero for �=0,1 ,2 , . . . ,�−1 �since two
rows of the matrix will be identical� but not for �=�, prov-
ing thereby �E1� and hence �6.21�.

For �=1, we consider the even-N case; a similar proof
will apply to the odd-N case for p�0. The polynomials de-
fined in �7.31� are skew orthogonal if

� � 
�� − ��e−iq��p�ei��w���w���d�d� = 0 �E5�

for q= p−1, p−2, . . . ,−p but not for q= p. The integral in
�7.31� involve �#�� and therefore Mehta’s method of integra-
tion �1� over alternate variables can be used. The integral in
�E5� is proportional to

� d�1 ¯ d��+2
���+1 − ��+2�e−iq��+2�
�=1

�

�ei��+1 − ei����#��ei�1, . . . ,ei�����
l=1

�+2

w��l� % �
�1�¯���&��+1���+2

d�1 . . . . . . d��+2
���+1

− ��+2�e−iq��+2−i��−1���=1
�+1��/2�

�=1

�

�ei��+1 − ei���#��ei�1, . . . ,ei����
l=1

�+2

w��l�

%� d�1d�3 ¯ d��+1�
l=0

�/2

w��2l+1�det�
ei��+1��1/2 F��+1�/2��1� ¯ ei��+1���+1/2 F��+1�/2���+1�

ei��−1��1/2 F��−1�/2��1� ¯ ei��−1���+1/2 F��−1�/2���+1�

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

e−i��−1��1/2 F−��−1�/2��1� ¯ e−i��−1���+1/2 F−��−1�/2���+1�

e−iq�1 F−q��1� ¯ e−iq��+1 F−q���+1�

� , �E6�

where �=2p−1 is even and

Fk��� = �
�

�

eik�w���d� . �E7�

In the last step of �E6� the integration over alternate variables
is done and then the integrand symmetrized as in �14�. The
determinant in �E6� vanishes for q= p−1, p−2, . . . ,−p, but

not for q= p, proving thereby �E5� and hence �7.31�.
For �=4, the polynomials defined in �9.20� are skew or-

thogonal if

� �e−iq��p��e
i�� + iqe−iq��p�ei���w���d� = 0, �E8�

for q= p−1, p−2, . . . ,−p but not for q= p. Using �= p−1 /2,
the lhs is proportional to

� d�1 ¯ d��+1�exp�− iq��+1�
�

���+1

e−i��−1/2���+1�

j=1

�

�ei��+1 − ei�j�2� + iqe−iq��+1e−i��−1/2���+1�
j=1

�

�ei��+1 − ei�j�2�
��#��ei�1, . . . ,ei����4
�

l=1

�+1

w��l��
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%� d�1 ¯ d��+1
�
l=1

�+1

w��l��det�
ei��+1/2��1 i�� + 1/2�ei��+1/2��1

¯ ei��+1/2���+1 i�� + 1/2�ei��+1/2���+1

ei��−1/2��1 i�� − 1/2�ei��−1/2��1
¯ ei��−1/2���+1 i�� − 1/2�ei��−1/2���+1

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

e−i��−1/2��1 − i�� − 1/2�e−i��−1/2��1
¯ e−i��−1/2���+1 − i�� − 1/2�e−i��−1/2���+1

e−iq�1 − iqe−iq�1
¯ e−iq��+1 − iqe−iq��+1

� ,

�E9�

where as in �14� we have used �D1� and then symmetrized
the integrand. The skew-orthogonality condition �E8� fol-

lows from �E9�, since the determinant vanishes for q= p
−1, p−2, . . . ,−p.
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